XRD and SEM characterization of archaeological findings excavated in Lithuania

Algimantas Merkevičius¹,
Petr Bezdicka²,
Remigijus Juškėnas³,
Jonas Kiuberis⁴,
Jūratė Senvaitienė⁴,
Irma Pakutinskienė⁴ and
Aivaras Kareiva⁴*

¹ Department of Archaeology, Vilnius University, Universiteto 7, LT-01513 Vilnius, Lithuania
² Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, CZ-25068 Rez, Czech Republic
³ Department of Materials Structure, Institute of Chemistry, A. Goštauto 9, LT-01108 Vilnius, Lithuania
⁴ Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

INTRODUCTION

Pottery and amber are the most numerous groups of Bronze Age finds. Pottery and amber analysis reveals important information about the daily life and ethncial and cultural aspects of the society of a certain period. Therefore, pottery studies are crucial for the reproduction of the lifestyle of society during a particular period [1–6]. It is well known that the production processes of antique ceramics can be derived together with changes in the manufacturing techniques. In this respect, maximum heating temperature, the duration of firing and kiln redox atmosphere are important factors helping to understand the transformations [7, 8]. Contemporary literature on amber deals predominantly with its botanical significance, identification and provenance of different inclusions (insects, plant species, etc.) [9–11]. However, the literature speaks about the prevention of amber deterioration, especially by the environmental control. Therefore, careful characterization of ancient pottery and amber is very important not only for archaeologists but also for professionals working in the field of conservation chemistry [12, 13].

Until quite recently, the archeologists in Lithuania have been using basically the visual observation method to characterize the pottery and amber of the Bronze Age. In general, such visual observation is necessary, but it is only the first step of the investigation. Thus, there is a need of a more detailed chemical and physical analysis of pottery and amber. Therefore, in the present study our attention has been focused on the characterization of different pottery and amber samples

In this article the results of an analytical characterization of archaeological pottery and amber samples from different regions of Lithuania are presented. The samples of ancient pottery and amber from villages Benaičiai (West Lithuania) and Turlojiškės (South Lithuania) were characterized by powder X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). It was concluded that the investigated pottery samples from the Western and Southern Lithuania showed different morphology and phase composition, possibly due to different fabrication conditions. However, the morphology of the archaeological amber samples excavated in different complexes was almost identical. The XRD results showed that a small amount of quartz is trapped inside amber.

Key words: archaeological findings, Western and Southern Lithuania, pottery, amber, analytical characterization
found in Lithuania using powder X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The pottery and amber samples for this investigation were collected at two archaeological complexes (Turlojiškės and Benaičiai) located in different regions of Lithuania.

EXPERIMENTAL

The Bronze Age pottery and amber samples found in the Lithuanian villages Benaičiai (Western Lithuania) and Turlojiškės (Southern Lithuania) were chosen for the characterization. The Benaičiai archaeological complex is situated in Kretinga district, Darbėnai municipality, Benaičiai village, eastwards from the Šventoji river, on its left bank, between Šventoji and a nameless rivulet. The Turlojiškės archaeological complex is situated in a large peaty area of over a hundred hectares in Kalvarijos district and municipality, in Turlojiškės village as well as in the neighbouring villages along the right bank of the Kirsna river. The exact locations of the above mentioned archaeological complexes are presented in Fig. 1.

The pottery samples were characterized by powder X-ray diffraction analysis (XRD) performed with a D8 Bruker AXS powder diffractometer using CuKα radiation. The amber samples were characterized by powder X-ray diffraction analysis (XRD) performed with a PANalytical X’Pert PRO powder diffractometer equipped with a conventional X-ray tube also using CuKα radiation. The morphology and microstructure of the pottery and amber samples were examined by scanning electron microscopy (SEM) on a JOEL 820 scanning electron microscope. In order to avoid charging, the samples were lightly coated with Au/Pd.

RESULTS AND DISCUSSION

The phase purity of the archaeological pottery samples were investigated by powder XRD analysis. As was expected, the X-ray diffraction patterns of the ancient pottery specimens (see Fig. 2) exhibited a multiphasic character of the investigated polycrystalline samples. The results obtained from the XRD analysis data are summarized in Table 1. As it is seen, quite different phase composition was determined for two historical ancient pottery samples obtained from different archaeological complexes. The Benaičiai pottery is characterized by the presence of quartz as the main phase, ant muscovite, titanite and sodium anorthite as secondary phases. The presence of large amount of the quartz phase in the Turlojiškės pottery was determined as well. However, the main crystalline component of this ceramic sample is evidently calcite. Secondary phases, such as muscovite, calcium hydrogen sulphate and nontronite were also identified. Therefore, only two common phases, quartz and muscovite, were found to be in both ancient pottery samples obtained from different places of Lithuania. These results suggest that the manufacture of the two historical ancient pottery samples was different. The presence of calcium carbonate in the Turlojiškės pottery clearly confirms this assumption. Apparently the firing temperature of the pottery from Turlojiškės is lower as compared with the calcination temperature of the ceramic sample from Benaičiai.

Archaeological amber samples were also examined by powder XRD analysis. Buchberger et al. [14] has used capillary electrophoresis and determined that the Baltic amber inclusion droplets contain water, in which a variety of inorganic cations (Na+, K+, Ca2+, Mg2+) and anions (Cl−, Br−, NO3−, SO42−) may be dissolved. Accordingly, the crystallization of inorganic salts during the formation of amber could possibly take place as well. The XRD patterns of two archaeological amber samples are shown in Fig. 3. As it was expected, the X-ray diffraction

![Fig. 1. Locations of archaeological complexes of Benaičiai and Turlojiškės](image)

Table 1. Phase analysis data for the Benaičiai and Turlojiškės pottery samples

<table>
<thead>
<tr>
<th>Pottery sample</th>
<th>Phases obtained from XRD analysis</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaičiai</td>
<td>SiO2 (quartz)</td>
<td>Main</td>
</tr>
<tr>
<td></td>
<td>(K,Na)(Al,Mg,Fe)2(Si,Al)O(OH)2 (muscovite)</td>
<td>Secondary</td>
</tr>
<tr>
<td></td>
<td>CaTiO(SiO3) (titanite)</td>
<td>Secondary</td>
</tr>
<tr>
<td></td>
<td>(Ca,Na)(Si,Al)O4 (sodium anorthite)</td>
<td>Secondary</td>
</tr>
<tr>
<td>Turlojiškės</td>
<td>CaCO3 (calcite)</td>
<td>Main</td>
</tr>
<tr>
<td></td>
<td>SiO2 (quartz)</td>
<td>Secondary</td>
</tr>
<tr>
<td></td>
<td>(K,Na)(Al,Mg,Fe)2(Si,Al)O(OH)2 (muscovite)</td>
<td>Secondary</td>
</tr>
<tr>
<td></td>
<td>CaH2(SO4)2 (calcium hydrogen sulphate)</td>
<td>Secondary</td>
</tr>
<tr>
<td></td>
<td>Ca3 Fe2(Si,Al)O(OH)4H2O (nontronite)</td>
<td>Secondary</td>
</tr>
</tbody>
</table>
patterns of the amber specimens exhibited amorphous character. Both XRD patterns indicated an unidentified amorphous humps between $2\theta = 10-25^\circ$, reaching the maximum height at around $18^\circ$. No peaks due to an insignificant crystallization of metal salts could be identified in both XRD patterns. On the other hand, the XRD patterns of the archaeological amber samples contain rather sharp and intensive peak at around $2\theta \approx 32.0^\circ$. Surprisingly, this diffraction peak is the most intensive diffraction line for the quartz (SiO$_2$) phase [PDF 46–1045]. These results suggest for the first time to our knowledge that during the formation of amber, a small amount of silica was trapped inside it. Apparently, the sample excavated in the Turlojiškės archaeological complex contains a higher amount of SiO$_2$ phase.

Scanning electron microscopy (SEM) was employed for the investigation of specific surface morphological features of the ancient pottery and amber. The SEM micrographs can give a direct view on densification, which is a very informative feature of the technology used for the fabrication of pottery [15]. The micrograph obtained in secondary electron mode for the pottery sample from the Benaičiai village is shown in Fig. 4. As it is seen, the surface of the pottery from Benaičiai...
contains volumetric plate-like grains with a different crystallite size ranging from 200 nm to 3 μm. Therefore, the micrograph from the *Benaicių* pottery sample reveals a broad distribution of agglomerates of fine particles with a porous structure. One can recognize the morphology observed that this specimen was fired in a multi-step technology at relatively high temperatures [15, 16]. Fig. 5 shows the surface features of the archaeological complex of *Turlojiškės*. The SEM image of this sample from *Turlojiškės* shows a flat surface containing spherically shaped pores (2–5 μm). The voids and cracks of various arbitrary shapes are also seen. This allowed us to interpret that the pottery from *Turlojiškės* was fired at relatively low temperatures. Moreover, such microstructure is characteristic of the ceramics sintered in one temperature [16].

The textural properties of the amber samples were also investigated by SEM. It is interesting to note that the microstructure of both archaeological amber samples irrespective of their origin was found to be almost identical. A scanning electron micrograph of the representative historical amber sample is shown in Fig. 6. Evidently, the surface of amber is exceptionally smooth, however, it contains many prolonged cracks. Spherical and ellipsoidal droplets of inclusions of 1–3 μm size can be also clearly seen.

**CONCLUSIONS**

Archaeological pottery and amber samples found in the Lithuanian villages *Benaicių* (West Lithuania) and *Turlojiškės* (Southern Lithuania) were characterized by XRD and SEM methods. The XRD analysis clearly showed that the investigated pottery samples were polycrystalline materials and composed of different phases. The XRD results revealed that in the amber samples a small amount of quartz was trapped inside. To our knowledge, such observation has not been previously reported. Moreover, we have demonstrated that scanning electron microscopy is an indispensable means for the characterization of ancient pottery and amber.

Received 2 February 2007
Accepted 22 February 2007

**References**


**Al gimantas Merkevičius, Petr Bezdicka,**
**Remigijus Juškénas, Jonas Küberis, Jūratė Senvaitienė,**
**Irma Pakutinskienė, Aivaras Kareiva**

**LIETUVOS ARCHEOLOGINIŲ RADINIŲ APIBŪDINIMAS XRD IR SEM METODAI**

**Santrauka**

Šiame darbe archeologiniai keramikos bei gintaro pavyzdžiai, iškasti Benaicių (Vakarų Lietuva) ir Turlojiškių (Pietų Lietuva) archeologinėse radimvietėse, buvo tirti rentgeno spinduliu diffrakcine (XRD) analize ir skleidžiamąja elektroninė mikroskopija (SEM). XRD tyrimai parodė, kad archeologinės keramikos pavyzdžiai yra sudaryti iš daugelio kristalinės fazės. Be to, keraminės šukės, rastos skirtingose radimviete, pasižymi ganečtinai skirtinga fazės sudėtimi. Pirmą kartą, mūsų duomenimis, pastebėta, kad archeologinių gintaro pavyzdžių savo sudėtyje turi nedidelius kiekius kristalinės kvarco fazės. Padaryta išvada, kad skleidžiamoji elektroninė mikroskopija yra itin vertingas archeologinių radinių tyrimo bei apibūdinimo metodas.