Oxidative function of neutrophils in periodontitis patients with type 1 diabetes mellitus

Renata Šadzevičienė, Jonas Žekonis¹, Gediminas Žekonis¹, Pajauta Paipalienė
Clinic of Dental and Oral Pathology, ¹Clinic of Prosthetic Dentistry,
Kaunas University of Medicine, Lithuania

Key words: periodontitis, diabetes mellitus, neutrophils, chemiluminescence.

Summary. Background. The involvement of reactive oxygen species in periodontal diseases is unclear. The aim of the present study was to explore the oxidative function of neutrophilic leukocytes of the peripheral venous blood in patients with severe periodontitis and type 1 diabetes mellitus and in the control subjects with healthy periodontal tissues and without systemic diseases.

Materials and methods. The leukocytes for the present investigation were obtained from peripheral venous blood of 38 patients with severe periodontitis and type 1 diabetes mellitus and 27 control subjects. The maximal luminol-dependent chemiluminescence and peak time values of neutrophils stimulated with non-opsonized Escherichia coli ATCC 25922 and Staphylococcus aureus 256 were measured.

Results. The maximal luminol-dependent chemiluminescence of neutrophils in patients with severe periodontitis, stimulated with non-opsonized Escherichia coli and Staphylococcus aureus, is mainly lower than that in the control group subjects (p<0.001). Luminol-dependent chemiluminescence of neutrophils reached its maximal value at the same time in both the diseased and the healthy patients.

Conclusion. In periodontitis, local non-opsonized bacteria might stimulate neutrophilic leukocytes to release oxygen species. However, these cells in patients with periodontitis are characterized by a lower intensity of luminol-dependent chemiluminescence (p<0.001) compared to analogous findings in people with healthy periodontal tissues.

This might indicate insufficient microbicidal activity of these cells in patients with periodontitis.

Introduction

Epidemiological studies indicate that 5–20% of the population suffer from severe forms of periodontitis (1). Active periodontitis occurs in a susceptible host (2). The susceptibility of the host is partly hereditary (such as inadequate or unregulated immune response) but can also be influenced by environmental and behavioral factors such as viral infections, smoking, and stress (3, 4).

It has been recognized for many years that some systemic diseases, especially diabetes mellitus, may influence periodontal health. The relationship between diabetes mellitus and periodontal disease has initiated much research and debate over the past decade (5–8).

Diabetes mellitus is a chronic metabolic disorder that affects more than 100 million people worldwide (9). The incidence of periodontitis increases among diabetic subjects after puberty and as the patients’ population ages. Periodontal disease may be more frequent and severe in diabetic individuals with more advanced systemic complications. There is a relationship between periodontal disease and diabetes mellitus, especially in patients with poorly controlled disease or hyperglycemia (10).

Most authors (11–14) think that metabolic disturbances in periodontal tissues may lower the resistance of diabetics to infections and thus influence the initiation, development, and progression of inflammatory periodontal disease.

There is an increasing body of evidence now available that implicates reactive oxygen species (ROS) in the pathogenesis of a variety of diseases, in addition to providing an important function in normal metabolic reactions (15). Periodontal disease is no exception to the potential influence of ROS. There is a clearly defined substantial role for reactive oxygen metabolites in periodontitis (16, 17), but little research has been performed in this area (16).

The yields of superoxide ions and other ROS can be measured by means of luminol-dependent chemi-
luminescence (CL) (18, 19).

It is known (20) that the intensity of leukocyte CL depends on the nature and concentration of substances stimulating these cells. For leukocyte stimulation, chemical materials, opsonized microorganisms, and lipopolysaccharide are mostly used. In medical literature we found no findings concerning studies of luminol-dependent CL of peripheral venous blood (PVB) leukocytes from periodontitis patients, stimulated by non-opsonized microorganisms. It is possible that in the environment of the gingival crevice neutrophilic leukocytes contact with non-opsonized microorganisms. Hence, the response to non-opsonized microorganisms can play a decisive role in development of periodontitis.

The aim of the present study was to investigate the generation of ROS by leukocytes of PVB in patients with aggressive periodontitis and type 1 diabetes mellitus and in control subjects with healthy periodontal tissue using the method of luminol-dependent chemiluminescence; the stimulation of these cells was performed using non-opsonized Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).

Materials and methods

The patients for the study were selected from a large number of individuals with pathology of periodontal tissues and type 1 diabetes mellitus; the patients were treated at the Clinic of Endocrinology of Kaunas University of Medicine Hospital. The patients were examined clinically and radiographically and were diagnosed with periodontitis. Only patients with marked signs of periodontitis were selected and included in our study; the selection was performed using Russell’s (21) periodontal index (PI).

In performing investigations of luminol-dependent CL, leukocytes were obtained from peripheral venous blood of 38 diabetes mellitus patients suffering from severe periodontitis and from peripheral venous blood of 27 control subjects without any systemic pathology and with healthy periodontal tissues. The age of patients under study ranged from 18 to 50 years.

ROS generation was investigated using the luminol-dependent chemiluminescence method as proposed by L. G. Korkina et al. (19). Chemiluminescence measurements were performed at the Department of Biochemistry of Kaunas University of Medicine using a liquid scintillation counter “Delta-300.”

Luminol and Hanks’ balanced salt solution (HBSS) were obtained from Sigma Chemical Co. St. Lois. Mo (USA). Plastic vials and other disposable pieces of plastic were obtained from Care Roth GmbH and Co. KG.

E. coli and S. aureus samples were grown at the Laboratory of Microbiology of Kaunas University of Medicine Hospital. Specimens of E. coli and S. aureus cultures for the investigations were used within 24 hours.

Preparation of leukocyte specimens. For the assessment of ROS, leukocytes were obtained from PVB of 38 patients with aggressive periodontal diseases and type 1 diabetes mellitus and from PVB of 27 healthy control subjects. Ten milliliters of PVB were taken in the morning before meals. Blood clotting was controlled with heparin (20 units/ml). Plastic test tubes containing blood were positioned at an angle of 45 degrees and were kept for one hour at the temperature of 37°C. Then the supernatant layer of plasma rich in leukocytes was aspirated and diluted with HBSS (pH 7.2) up to 5 ml. Then, this cell suspension in portions of 1 ml was taken into cuvettes used for chemiluminescence investigation, putting aside only 1 ml of the suspension for counting up the number of leukocytes and the percentage of their composition.

Investigation of ROS generation. Cuvettes containing leukocyte suspension were placed in a thermostat with water, gradually adding 0.01 ml of luminol (final luminol concentration 50 μM) and taking measurements of the maximal level of chemiluminescence of non-stimulated neutrophilic leukocytes (NL). After 5 min, 0.01 ml of non-opsonized E. coli or S. aureus suspension was added, and the light reaction was followed after 15, 30, 45, 60, 75, and 90 min. Two CL parameters were calculated from the measurements:

1. Peak maximum cpm 1×10⁴ neutrophils;
2. Peak times values (time in minutes after starting the liquid scintillation counter required to reach the peak maximum).

Chemiluminescence of leukocytes make up the main part of the total amount of blood or of leukocyte suspension CL. Therefore, the intensity of CL of stimulated or non-stimulated NL directly depends on the amount of NL in the medium because CL intensity as triggered by NL can be calculated from the total leukocyte CL fraction (19), using the following equation:

\[ I_{(NL)} - I_{(leuk)} \times 100 \text{ V/ven} \]

where \( I_{(NL)} \) is \( 1 \times 10^8 \) NL chemiluminescence (cpm); \( I_{(leuk)} \) – CL of the leukocyte suspension; \( V \) – the volume of suspension (ml); \( c \) – the amount of leukocytes; \( n \) – NL percentage; and \( V \) – the volume of the cuvette (ml) used for photometric analysis.

Statistical analysis. The statistical significances of differences between groups were analyzed using Student’s t-test. Data are expressed as mean±standard deviation.
Results

Clinical data. The differences in mean age between the patients with severe periodontitis and the control group subjects was not significant (p>0.05) (Table 1). As seen in Table 1, periodontal tissues in the control group were healthy, while such tissues in the study group showed significant inflammatory changes.

Laboratory data. The results of the luminol-dependent CL studies are presented in Table 2. It should be noted that the maximal value of luminol-dependent CL of the peripheral blood leukocytes stimulated by non-opsonized *E. coli* and *S. aureus* in the control group subjects exceeded analogous CL values of periodontitis patients with type 1 diabetes mellitus (p<0.001).

It is interesting to note that CL of PVB leukocytes stimulated by *S. aureus* in both the patients with periodontitis and the controls was of essentially lower intensity, compared to the case of stimulation with *E. coli*.

In both the patients with periodontitis and the healthy controls, CL of PVB leukocytes stimulated by either *E. coli* or *S. aureus* reached its maximal value after approximately 30 minutes.

### Table 1. Investigation data of the subjects and clinical evaluation

<table>
<thead>
<tr>
<th>Investigation groups</th>
<th>n</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Russell’s PI (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodontitis patients with type 1 diabetes mellitus Controls</td>
<td>38</td>
<td>21</td>
<td>36.9±2.8</td>
<td>5.63±0.41</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>15</td>
<td>29.2±3.2</td>
<td>0</td>
</tr>
</tbody>
</table>

### Table 2. Maximal luminol-dependent chemiluminescence of peripheral venous blood neutrophilic leukocytes (NL) in the investigated groups of patients

<table>
<thead>
<tr>
<th>Investigation groups</th>
<th>n</th>
<th>1×10⁶ NL chemiluminescence (cpm) after stimulation (non-opsonized <em>E. coli</em> non-opsonized <em>S. aureus</em>)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodontitis patients with type 1 diabetes mellitus Controls</td>
<td>38</td>
<td>96,612±6,561, 25,729±2,732</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Controls</td>
<td>27</td>
<td>182,280±9,421, 107,819±7,028</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>&lt;0.001</td>
<td></td>
</tr>
</tbody>
</table>

### Table 3. Peak time values in minutes of luminol-dependent chemiluminescence

<table>
<thead>
<tr>
<th>Investigation groups</th>
<th>n</th>
<th><em>E. coli</em></th>
<th><em>S. aureus</em></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodontitis patients with type 1 diabetes mellitus Controls</td>
<td>38</td>
<td>30.0±2.3</td>
<td>30.0±2.5</td>
<td>&gt;0.05</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>30.0±2.2</td>
<td>30.0±3.3</td>
<td>&gt;0.05</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>&gt;0.05</td>
<td>&gt;0.05</td>
<td></td>
</tr>
</tbody>
</table>
chemiluminescence in patients with periodontitis and without any systemic pathology under the influence of non-opsonized \(E.\ coli\). It is known (26–28) that luminol-dependent CL is conditioned by myeloperoxidase (MPO) system of NL. Therefore the findings obtained in our experiments on control subjects concerning the markedly increased luminol-dependent CL of peripheral blood leukocytes affected by non-opsonized bacteria might be indicative of an elevated activity of MPO system in these cells under the influence of non-opsonized bacteria. This fact has been confirmed by our previously reported findings (29) about the intensification of the degranulation of NL myeloperoxidase in subjects with healthy periodontal tissues affected by non-opsonized \(E.\ coli\). A decreased luminol-dependent CL under experimental conditions could indicate a decreased microbicidal activity of these cells (30).

**Conclusions**

Non-opsonized \(Escherichia\ coli\) and \(Staphylococcus\ aureus\) enhanced the luminol-dependent chemiluminescence of peripheral blood neutrophilic leukocytes in patients with periodontitis and type I diabetes mellitus and in the control group subjects. The luminol-dependent chemiluminescence of neutrophilic leukocytes from periodontitis patients stimulated by non-opsonized \(Escherichia\ coli\) and \(Staphylococcus\ aureus\) is mainly \(p(0.001)\) lower than that in the control group subjects. This could indicate insufficient microbicidal activity of neutrophilic leukocytes in patients with periodontitis.

---

**Sergančiųjų parodontitū ir I tipo cukrinio diabetu neutrofilinų leukocitų oksidacinė funkcija**

Renata Šadzevičienė, Jonas Žekonis\(^1\), Gediminas Žekonis\(^1\), Pajauta Paipalienė

*Kauno medicinos universiteto Dantų ir burnos ligų klinika*

\(^1\)Dantų ir žandikaulių ortopedijos klinika

**Raktažodžiai:** parodontitas, cukrinis diabetas, neutrofilai, chemiluminescencija.

**Santrauka.** Aktyvius deguonies formų įtaka priedančio audinių uždegiminėms ligoms išsvystyti nėra visiškai aiški. Darbų tikslas. Išsirinkti sergančiųjų I tipo cukrinio diabetu, kuriems rasta sunkių priedančio audinių uždegiminės kilmės pažeidimų, bei kontroliškės grupės asmenų, kuriems nerasta sisteminės patologijos, priedančio audinių savybės, neutrofilinių leukocitų įvairių funkcijų.

Medžiaga ir metodai. Tyrimui atlikti 38 asmenys, sergantys I tipo cukrinio diabetu ir sunkios formos parodontitū. Kontrolinę grupę sudarė 27 sveiki asmenys. Iš periferinio veninio kraujo buvo išskirti leukocitai. Jie buvo stimuliuoti neopsonizuotomis \(E.\ coli\) ir \(S.\ aureus\) bakterijomis, matuoti nuo liuminolio priklausomos chemiluminescencijos maksimumui.

Rezultatai. Stimuliuojant neopsonizuotomis \(E.\ coli\) ir \(S.\ aureus\) bakterijomis, sergančiųjų I tipo cukrinio diabetu ir sunkios formos parodontitū asmenų periferinio veninio kraujo neutrofilinių leukocitų nuo liuminolio priklausomos chemiluminescencijos maksimumai buvo statistiškai reikšmingai mažesni \(p(0.001)\) nei kontrolinės grupės tarymų. Ir sergančiųjų, ir kontrolinės grupės tarymų neutrofilinių leukocitų nuo liuminolio priklausomos chemiluminescencijos maksimumų pasiekė panašių laikų. 

Išvada. Neopsonizuotomis bakterijomis lokalizuojant sergančiųjų parodontitū periferinio veninio kraujo neutrofilinių leukocitų oksidacinė aktyvumą. Tačiau sergančiųjų parodontitū neutrofilinių leukocitų nuo liuminolio priklausomos chemiluminescencijos maksimumai buvo iš esmės \(p(0.001)\) mažesni nei analogiškai rodikliai kontrolinės grupės tarymų. Tai galėtų būti apie šių ląstelių nepakankamą baktericinę aktyvumą sergant parodontitu.

---

Adresas susirašinėti: R. Šadzevičienė, KMU Dantų ir burnos ligų klinika, Eivenių 2, 50009 Kaunas
El. paštas: irenane@med.kmu.lt

Medicina (Kaunas) 2006; 42(6)
Oxidative function of neutrophils in periodontitis patients with type 1 diabetes mellitus

References

17. Sheikh M, Bouhafs RKL, Hammarström KJ, Jarstrand C. Lipid peroxidation caused by oxygen radicals from Fusobac-
18. Shapira L, Borinski R, Sela MN, Soskolne A. Superoxide formation and chemiluminescence of peripheral polymorpho-
19. Korkina LG, Samochatova EV, Maschan AA, Suslova TB, Cheremisina ZP, Afanas’ev IB. Release of active oxygen rad-
25. Žekonis G, Žekonis J. Effect of bacterial stimulants on release of reactive oxygen metabolites from peripheral blood neut-
29. Žekonis J, Žekonis G, Sakalauskiene J. Effects of non-opsonized Escherichia coli on myeloperoxidase activity in me-

Received 10 March 2006, accepted 9 June 2006
Sstraipsnis gauts 2006 03 10. priimtas 2006 06 09

Medicina (Kaunas) 2006; 42(6)